Construction and Properties of Adhesive and Weak Adhesive High-Level Replacement Categories

نویسندگان

  • Ulrike Golas
  • Hartmut Ehrig
  • Leen Lambers
چکیده

As presented in Ehrig et al. (Fundamentals of Algebraic Graph Transformation, EATCS Monographs, Springer, 2006), adhesive high-level replacement (HLR) categories and systems are an adequate framework for several kinds of transformation systems based on the double pushout approach. Since (weak) adhesive HLR categories are closed under product, slice, coslice, comma and functor category constructions, it is possible to build new (weak) adhesive HLR categories from existing ones. But for the general results of transformation systems, as additional properties initial pushouts, binary coproducts compatible with a special morphism class M and a pair factorization are needed to obtain the full theory. In this paper, we analyze under which conditions these additional properties are preserved by the categorical constructions in order to avoid checking these properties explicitly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic High-Level Nets as Weak Adhesive HLR Categories

Adhesive high-level replacement (HLR) system have been recently introduced as a new categorical framework for graph transformation in the double pushout approach [1, 2]. They combine the well-known framework of HLR systems with the framework of adhesive categories introduced by Lack and Sobociński [3, 4]. The main concept behind adhesive categories are the so-called van Kampen squares, which en...

متن کامل

Towards Algebraic High-Level Systems as Weak Adhesive HLR Categories

Adhesive high-level replacement (HLR) systems have been recently established as a suitable categorical framework for double pushout transformations based on weak adhesive HLR categories. Among different types of graphs and graph-like structures, various kinds of Petri nets and algebraic high-level (AHL) nets are interesting instantiations of adhesive HLR systems. AHL nets combine algebraic spec...

متن کامل

Towards Algebraic High-Level Systems as Weak Adhesive HLR Categories

Adhesive high-level replacement (HLR) systems have been recently established as a suitable categorical framework for double pushout transformations based on weak adhesive HLR categories. Among different types of graphs and graph-like structures, various kinds of Petri nets and algebraic high-level (AHL) nets are interesting instantiations of adhesive HLR systems. AHL nets combine algebraic spec...

متن کامل

Weak Adhesive High-Level Replacement Categories and Systems: A Unifying Framework for Graph and Petri Net Transformations

Adhesive high-level replacement (HLR) systems have been recently introduced as a new categorical framework for graph tranformation in the double pushout (DPO) approach. They combine the wellknown concept of HLR systems with the concept of adhesive categories introduced by Lack and Sobociński. While graphs, typed graphs, attributed graphs and several other variants of graphs together with corres...

متن کامل

Categorical Frameworks for Graph Transformation and HLR Systems Based on the DPO Approach

Several variants of high-level replacement (HLR) and adhesive categories have been introduced in the literature as categorical frameworks for graph transformation and HLR systems based on the double pushout (DPO) approach. In addition to HLR, adhesive, and adhesive HLR categories several weak variants, especially weak adhesive HLR with horizontal and vertical variants, as well as partial varian...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Categorical Structures

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2008